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ABSTRACT

We present Colibri, an open source networking toolkit for data ex-
change, model synchronization, and voice transmission to support
rapid development of distributed cross reality research prototypes.
Development of such prototypes often involves multiple hetero-
geneous components, which necessitates data exchange across a
network. However, existing networking solutions are often unsuit-
able for research prototypes as they require significant development
resources and may be lacking in terms of data privacy, logging capa-
bilities, latency requirements, or supporting heterogeneous devices.
In contrast, Colibri is specifically designed for networking in in-
teractive research prototypes: Colibri facilitates the most common
tasks for establishing communication between cross reality compo-
nents with little to no code necessary. We describe the usage and
implementation of Colibri and report on its application in three cross
reality prototypes to demonstrate the toolkit’s capabilities. Lastly,
we discuss open challenges to better support the creation of cross
reality prototypes.

1 INTRODUCTION

Over the past few years, there has been a substantial increase in
research prototypes for cross reality (CR) environments, mainly
concentrating on the web and the Unity game engine [31]. One
driving force behind this growth is the availability of increasingly
sophisticated toolkits for these development environments: For ex-
ample, collaborative mixed reality (MR) systems “have only recently
advanced to the point where researchers can focus deeply on the
nuances of supporting collaboration, rather than needing to focus
primarily on creating the enabling technology” [7]. Although there
has been a proliferation of toolkits in different areas such as visual-
ization [6, 9, 27, 30] or logging [13, 22], networking has been mostly
neglected and delegated to commercial solutions. Networking is an
essential part in many interactive CR prototypes, for example to sup-
port collaboration across realities (e.g., multiple homogeneous [8]
or heterogeneous [29] devices) or to connect complementary in-
terfaces [33] (e.g., transitioning between desktop and MR [15]).
In contrast to commercial applications, research prototypes have
distinct requirements regarding the empirical reproducibility, data
availability, latency, and privacy – ruling out externally hosted server
software while simplifying development by neglecting edge cases
(e.g., anti-cheat precautions) or artificial restrictions (e.g., reducing
update rate to save on bandwidth). Commercial networking solutions
may also create additional difficulties for CR prototypes: For exam-
ple, a common requirement for CR prototypes is the synchronization
of objects across coordinate systems with different initial reference
points. Here, the provided object synchronization algorithms must
consider the difference in coordinate systems, which makes the use
of naı̈ve synchronization scripts impractical.
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To better address the distinct needs of CR research prototypes, we
created Colibri (communication library), an open source networking
toolkit for data exchange, model synchronization, and voice trans-
mission. In the following sections, we review related work, outline
the usage and technical implementation of Colibri, showcase its
capabilities based on three prior research projects, and discuss open
challenges to further support researchers in creating CR applications.

2 RELATED WORK

Toolkits have long been a driving force to reduce development
barriers for research prototypes. For example, the Studierstube
project [28] was one of the enablers of early AR prototypes. Simi-
larly, toolkits such as ubitrack [24] and proximity toolkit [20] allowed
for a proliferation of research prototypes using tracking and prox-
emic interaction, respectively. Other research-driven frameworks,
such as Webstrates [17] and its variants [2,12,26], support developers
in seamlessly synchronizing and sharing content across web-based
devices. Especially in the field of InfoVis, toolkits such as IATK [6],
DXR [30], u2vis [27], and RagRug [9] play an essential role to
significantly reduce the effort required to create data visualizations.
Recent toolkits such as MRAT [22] and RELIVE [14] also include
data capturing capabilities to record and analyze MR study data.

Similarly, commercial toolkits can facilitate development across
different platforms and provide essential development resources. For
example, Microsoft’s Mixed Reality Toolkit [21] is fundamental for
creating interactions in MR environments. In terms of networking,
commercial solutions (e.g., Photon Fusion [25], Unity Netcode [23])
provide highly flexible networking solutions, targeting a broad au-
dience. However, as discussed by Friston et al. [10], this flexibility
comes with significant limitations, such as requiring significant in-
tegration efforts, supporting only one platform (e.g., Unity but not
web), requiring external third-party services, making strong assump-
tions – usually in favor of game development requirements such as
anti-cheat behavior – and lacking capabilities necessary for research,
such as data logging. Beyond commercial solutions, the Ubiq sys-
tem [10] is most closely related to our own work and addresses
many of these issues. However, it focuses on the specific needs of
large-scale social virtual reality (VR) systems: For example, Ubiq
aims to balance a large number of clients with available throughput,
thereby introducing additional latency. In contrast, Colibri aims to
provide the ease of use of commercial networking solutions while
also making use of the distinct advantages of research prototypes
(e.g., ideal lab conditions with little to no latency) to facilitate CR
development.

3 COLIBRI

With Colibri, we aim to provide a networking toolkit that is specifi-
cally tailored towards CR research prototypes, favoring a quick and
easy setup without extensive programming and reduced complexity
through simplifying assumptions (e.g., small-scale deployment in
controlled labs), while prioritizing latency. Our toolkit can be inte-
grated into Unity [31] or web applications and uses a web server to
manage clients and distribute data. Colibri takes care of common
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networking tasks such as data exchange, model synchronization,
persistent data storage, voice transmission, and logging.

The following sections describe the usage and implementation
of Colibri. For brevity, we focus on its use in Unity projects, but
similar methods are available for web clients. Please refer to our
project page1 for more detailed documentation and examples.

3.1 Data Exchange
In the most general case, Colibri facilitates sending data through pub-
/sub communication [4]. Data can be published from anywhere in
the executed code, as illustrated with the following simple example
of sending an integer value (myInt) on a "click" channel:

1 Sync.Send("click", myInt);

The sent data can then be received anywhere in the application by
registering a listener as follows:

1 Sync.ReceiveInt("click", (myInt) => {

2 /* Will be called whenever an integer on

3 "click" channel is received */

4 });

This allows developers to send data of any type, including custom
classes (i.e., via JSON serialization), across the network. Published
messages are ephemeral and thus best suited for sending events, such
as button clicks.

3.2 Model Synchronization
For more complex cases, such as persistently synchronizing data
models between different clients, Colibri provides a model synchro-
nization behavior similar to state-of-the-art solutions (e.g., Unity
Netcode [23]). Consider, for example, a data model that represents
(and is attached to) a cube:

1 public class CubeModel : SyncBehaviour {
2 [Sync]

3 public Vector3 Position {
4 get => transform.position;

5 set => transform.position = value;

6 }

7 }

We extended Unity’s MonoBehaviour with a SyncBehaviour that
keeps track of any properties marked with the [Sync] attribute,
thereby automatically synchronizing the model’s marked properties
with other connected clients. Similar to the data exchange, this
synchronization supports all primitive data types (e.g., booleans,
integers, floats, strings, and arrays thereof) as well as common Unity
structs (e.g., Vector3, Color) out of the box, while custom classes
can be sent through JSON serialization. For each data model we
define a manager component to keep track of all instances of the
model:

1 public class CubeManager
2 : SyncedBehaviourManager <CubeModel > { }

Here, we only need to define an empty manager that inherits
SyncedBehaviourManager for the data model. We add it to the
Unity scene, and provide it with a Unity prefab to allow for dy-
namic instantiation of objects: when an object is created on one
client, Colibri’s SyncedBehaviourManager will automatically in-
stantiate this prefab on all connected clients. Models are stored
persistently on the server and are automatically retrieved whenever
a client connects. Since synchronizing the transform data (i.e., po-
sition, rotation, scale) of an object is a common use case, Colibri
provides a SyncTransform script (and matching manager) to easily
synchronize object transforms without requiring any additional code.

1https://github.com/hcigroupkonstanz/Colibri

While Colibri supports the synchronization between different coordi-
nate systems implicitly (i.e., by synchronizing localPosition and
localRotation), we plan to investigate the automatic alignment
of coordinate systems between devices with different initial points
of reference in the future.

3.3 Persistent Data Storage
While the examples above mainly focus on dynamic data exchange,
some actions (e.g., calibrating a room for a study) are usually
performed less frequently and require more persistent data stor-
age. For this, Colibri offers persistent data storage, allowing
data to be permanently saved on the server and easily shared
across all connected clients. For example, consider saving cali-
bration data (e.g., origin and orientation of coordinate system) in
a [Serializable] Calibration class. Once the calibration is
complete, it can be uploaded by specifying a unique name and the
data (e.g., instance of Calibration) that should be uploaded:

1 Store.Put("calibration", calibrationData);

Similarly, any client can then retrieve this data from the server by
specifying the name and expected class:

1 await Store.Get<Calibration >("calibration");

3.4 Voice Transmission
Similar to prior toolkits [10], Colibri also provides built-in voice
transmission for remote collaboration scenarios. Voice transmission
can be easily included in any project by adding a predefined Voice
Broadcast (for audio recording) and Voice Manager prefab (for audio
playback) to the Unity scene, without the need for any additional
code. Each new client will then appear as a customizable entity, thus
supporting spatial audio.

3.5 Logging
In our own experience, prototypes often break unexpectedly when
deploying to different devices (e.g., Microsoft HoloLens, Android,
iOS). In these cases, showing the logging output on the device
itself is often not feasible or involves tedious debugging setups (e.g.,
connecting an iPhone via cable to Apple’s Xcode IDE). To aid this
troubleshooting process, Colibri can automatically send logging
data, such as the console output, to the server and display it as a live
data feed on the web interface.

3.6 Technical Implementation
Colibri is built on a client-server architecture, with client implemen-
tations for Unity and JavaScript. When setting up a client, developers
have to simply specify the server’s address (either local or remote)
as well as their application name, which allows multiple research
projects to share the same server without interfering with each other.
Our server is written in TypeScript using NodeJS and provides a
web interface built with Angular and thus runs on any platform sup-
ported by NodeJS (e.g., Windows, macOS, Linux). This allows for
server-side broadcasting and recording (e.g., for voice transmission)
as well as centralized data storage (e.g., for persistent data storage).
In the future we want to investigate redirecting synchronized data to
logging toolkits such as MRAT [22] or RELIVE [13], which could
free up client resources. In addition, broadcasting messages could
further reduce setup friction for local area networks and allow for
automatic server discovery.

We employ a single TCP port for connections with Unity clients
and a WebSocket port for web clients for general data synchroniza-
tion, which ensures that messages arrive safely and in order. In terms
of data transmission, every client transmits differential updates as
JSON packets, using functional-reactive programming frameworks
such as UniRx and RxJS. In addition, we utilize UDP packets for
voice transmission, while the persistent data storage uses HTTP
requests to support large files.
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Figure 1: RELIVE [13] is a CR application that combines an immersive
analytics virtual reality view (left) with a synchronized visual analytics
desktop view (right). The application state of RELIVE is kept in sync
between both views using Colibri.

4 CASE STUDIES

To demonstrate the flexibility and broad application range of Colibri,
the following sections describe how we employed Colibri in our
own projects, ranging from hybrid user interfaces for single users,
to remote multi-user scenarios. While the selected works demon-
strate the key features of Colibri, our toolkit has been used in many
additional (as-of-yet) unpublished works and is therefore steadily
improving. Please refer to the original publications for more details
on the specific use cases described below. All included projects
were set up under lab conditions (i.e., Ethernet connection where
available, otherwise 5 GHz WiFi with an average < 5 ms round trip
times) and are available as open source project2.

4.1 RELIVE

RELIVE [13] is a CR visual analytics framework that combines an
immersive VR environment with a non-immersive desktop environ-
ment to enable in-depth analysis of MR user study data (see Fig. 1
and accompanying video3). RELIVE allows analysts to create visual-
izations of logged data, such as the movement trail of a study partic-
ipant based on their recorded positions over time. This visualization
can then be inspected both on a desktop in 2D (e.g., as top-down
movement path) and in a VR environment in 3D (e.g., embedded
within the 3D reconstruction of the original study environment). We
implemented the 2D desktop application using web technologies,
while the immersive VR environment was implemented in Unity for
the Meta Quest 2.

Here, we used Colibri to automatically synchronize the entire
application state (e.g., visualizations) using the model synchroniza-
tion: For example, we created a data class to represent visualizations
(e.g., name, type of visualization, color) and utilized the model syn-
chronization function in Colibri to automatically keep the VR and
desktop environments in sync. Since synchronized data models are
persistent, refreshing the web page or restarting the VR client auto-
matically retrieves previously created visualizations. /relive supports
a variety of actions to aid data analysis, such as taking a screenshot
of the VR scene by pressing a button in the desktop interface: For
this, we registered a listener as described in data exchange (see
Sect. 3.1), which was then triggered by sending a message from the
web client on a predefined “screenshot” channel.

4.2 ARound the Smartphone
In the “ARound the smartphone” [16] project, we created a study
prototype in Unity that uses the Varjo XR3 as an augmented reality
(AR) head-worn display (HWD) to extend the physical screen of
a Google Pixel XL smartphone with a surrounding virtual screen
space (see Fig. 2 and accompanying video4). Using this setup,
study participants were tasked to navigate a grid map with touch
gestures, as known from state-of-the-art map applications. Since

2https://github.com/hcigroupkonstanz
3https://youtu.be/BaNZ02QkZ_k
4https://youtu.be/p6cHwLxHWJg

Figure 2: In “ARound the smartphone” [16] we use an AR HWD to
virtually extend the physical screen space of a smartphone. In this
project network latency was a priority, as the virtual and real screen
had to be kept perfectly in sync.

the visualized map virtually extended beyond the smartphone screen
using AR, the map position had to be synchronized between both
devices (e.g., from smartphone to AR HWD). We achieved this
by attaching the Colibri SyncTransform script to the map object
in Unity and adding the SyncManager prefab to the scene – thus
keeping the location of both maps (i.e., on the smartphone and in the
AR environment) in sync without having to write any code. Here,
we can easily add spectators (e.g., another AR HWD) since the
map’s position is automatically broadcasted to all connected clients
(cf. spectator viewer [14]). As Colibri prioritizes low latency, both
the smartphone screen and the virtual extension were kept (almost)
perfectly in sync, despite the high refresh rate of current AR HWDs
(i.e., 90+ Hz). Due to different coordinate systems of the smartphone
and AR HWD, we mounted a fiducial marker to the smartphone to
align the map’s position between both devices.

4.3 Re-locations
Re-locations [8] is a CR environment implemented in Unity for
the HoloLens 2 that explores the remapping of different physical
workspace layouts in remote collaboration scenarios in AR, to facili-
tate a common reference frame and the use of deictics (see accom-
panying video5). For example, a pair of remote collaborators might
work on a shared task using their respective desktop and whiteboard
(i.e., two physical workspaces), which are likely in different relative
locations within their rooms (see Fig. 3). They see each other as
virtual avatars, allowing them to be co-present in each other’s work
spaces. To support a common spatial awareness and understanding,
e.g., through semantically correct pointing gestures across these
incongruous spaces (e.g., pointing at the whiteboard while sitting
in front of the desktop PC), Re-locations automatically remaps the
position and rotation of the remote user’s avatar to make sense in
the local user’s workspace layout.

To correctly set up these physical workspaces in the real world,
we calibrated each room once and saved the corresponding data
using the persistent data storage in Colibri. Workspaces were then
automatically retrieved by scanning an AR marker containing the
ID of the room. In addition, the project uses the Colibri voice trans-
mission capabilities to enable spatial audio between collaborators.

5 DISCUSSION AND OPEN CHALLENGES

Although networking is an essential part of many CR applications,
the development of such research prototypes spans many more ar-
eas that require further support. Since sophisticated toolkits can
drastically reduce the technological barriers, we discuss four open
challenges, which we do not yet find adequately supported by exist-
ing toolkits.

5https://youtu.be/_D0_B4Rux1U
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Figure 3: The Re-locations [8] concept semantically corrects gaze
visualizations across different user-defined layout areas within physi-
cal workspaces during remote collaboration in augmented reality. For
example, if Anna is standing close to her desktop while looking at
the whiteboard screen (right) the 1:1 mapping of her rotation will be
interrupted, and her avatar rotates towards the whiteboard in Paul’s
environment (left).

Alignment of Coordinate Systems Another common task
when combining multiple systems on different points of the reality-
virtuality continuum is the alignment of coordinate systems. Nowa-
days, many devices have powerful integrated tracking capabilities,
making external tracking solutions (e.g., Optitrack) unnecessary.
However, this also results in each device establishing their own co-
ordinate system, which then needs to be aligned with all others. In
our experience, these solutions are usually specific to the hardware
configurations of each project and involve a combination of image
markers, external tracking systems, or specific workarounds (e.g.,
starting the application in the same room position). A unified solu-
tion that automatically provides coordinate system alignment could
greatly reduce the obstacles of combining multiple devices.

Transitional Interfaces Another key area for CR applications
are transitional interfaces, which support ongoing interaction across
various points on the reality-virtuality continuum. For example,
Apple recently showcased one such transitioning technique between
AR and VR through turning a knob on the side of their new Ap-
ple Vision Pro HWD [1]. Although other techniques have been
explored (e.g., [3, 11]), these are usually not easily integrated within
other research projects. Here, we see the potential for a library of
transitioning methods that could easily be replicated.

Asymmetric Device Capabilities CR applications can span
across multiple heterogeneous devices, such as desktop computers,
handheld devices (e.g., smartphones or tablets for AR), or head-worn
MR devices. Each device in this ecology has different capabilities or
limitations and, at times, a distinct role to fulfill. Here, automatically
detecting, communicating, and assigning roles based on capabilities
could be beneficial. For example, in asymmetric collaborative en-
vironments for immersive analytics, a desktop device can be useful
for displaying visualizations in 2D, while other MR devices could
be better suited for 3D visualizations. Here, we could specify data
transformations (e.g., [18, 19]) to automatically convert the data,
based on the specific capabilities or roles of the display device.

Merge Policies In many collaborative scenarios, multiple col-
laborators may manipulate an object simultaneously, such as two
users moving or rotating an object at the same time (see Fig. 4). In
such cases, a merge policy (e.g., averaging or summing up inputs) is
necessary to properly incorporate the manipulations of both users
(cf. [32]). Although Colibri already supports simultaneous manipu-
lation of the different properties of an object (e.g., one user rotates,
another translates) through its differential updates, our toolkit does
not yet support simultaneous input of the same property (e.g., multi-
ple users rotate an object).

20°

20°

45°

45°

25°

65°

a)

b)

Figure 4: A composition merge policy allows two users to simultane-
ous manipulate an object, for example by summing up users’ rotation
inputs [32].

6 CONCLUSION AND FUTURE WORK

Colibri is a Unity- and web-focused networking toolkit for re-
searchers to quickly prototype cross reality applications. Our toolkit
requires little to no code and aids in common networking tasks, such
as data exchange, model synchronization, and voice transmission.
It prioritizes low latency to suit the needs of research prototypes.
This toolkit was developed and extended through the course of our
own projects (i.e., [5, 14]) and is steadily improved through new
projects in our research group. However, to adequately support the
development of cross reality applications, further work is neces-
sary, for example by communicating asymmetric device capabilities,
automating coordinate system alignment, providing a set of transi-
tion techniques to quickly change between interfaces at different
points on the reality-virtuality continuum, and supporting merge
policies. While Colibri presents a first step towards supporting re-
search prototypes, we strongly believe that the development of more
sophisticated toolkits will be needed to pave the way for increased
adoption of cross reality applications in other application scenarios.

Colibri is available as open source project on GitHub:
https://github.com/hcigroupkonstanz/Colibri
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