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Fig. 1. Example application built with RagRug: (left) Hot air emissions in the basement. All measurements are taken in real-time by
stationary sensors observing heat distribution. Multiple sensors are visually annotated with panels giving detailed sensor characteristics,
including two types of time-series plots of temperature. (right) An application supporting the design of an exhibition of musical artefacts.
Each of the two exhibition walls on the left and right hand side has been decorated with multiple exhibits. For each decorated position,
a leader line extends to a timeline shown at the bottom of the wall.

Abstract—We present RagRug, an open-source toolkit for situated analytics. The abilities of RagRug go beyond previous immersive
analytics toolkits by focusing on specific requirements emerging when using augmented reality (AR) rather than virtual reality. RagRug
combines state of the art visual encoding capabilities with a comprehensive physical-virtual model, which lets application developers
systematically describe the physical objects in the real world and their role in AR. We connect AR visualizations with data streams from
the Internet of Things using distributed dataflow. To this end, we use reactive programming patterns so that visualizations become
context-aware, i.e., they adapt to events coming in from the environment. The resulting authoring system is low-code; it emphasises
describing the physical and the virtual world and the dataflow between the elements contained therein. We describe the technical
design and implementation of RagRug, and report on five example applications illustrating the toolkit’s abilities.

Index Terms—Augmented Reality, Visualization, Visual Analytics, Immersive Analytics, Situated Analytics

1 INTRODUCTION

For the past few years, one can observe increased interest in combining
visualization (Figure 2, left) with new user interface technologies, such
as virtual reality (VR) and augmented reality (AR). While immersive
visualization (Figure 2, middle) is usually implemented in VR, situated
visualization (Figure 2, right) is grounded in the real world and, there-
fore, implemented in AR. With a mobile AR display, the user is freed
from having to bring the data to the workplace and, instead, may go
where the data belongs.

In the notion of Willett et al. [72], “situated” means in perceptual
proximity to a physical referent, i.e., a meaningful object close to the
user. The requirement to have a meaningful referent is an important
distinction between immersive visualization and situated visualization:
For example, overlaying an X-ray visualization of hidden electrical
cables on a wall is a situated visualization, because the wall is a mean-
ingful referent for the cable visualization. An AR overlay showing
a bar chart of sales figures on the same wall may be an immersive
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visualization, but not a situated visualization, because the wall has
no semantic connection to the chart other than serving as its canvas.
Referents are key for situated visualization. By extension, the same
is true for situated analytics, i.e., analytic work supported by situated
visualization. Situated analytics near referents is not only relevant
for passive referents (plain objects) but even more for active referents
which provide their own data, e.g., via the Internet of Things (IoT).

Despite its promise to grant access to just the right data, anytime and
anywhere, few works explore situated analytics for lengthy or complex
tasks, such as visualization authoring [14, 15] or data exploration [18].
In contrast to immersive analytics, which successfully capitalizes on
providing unlimited virtual “space to think” [2, 4, 6], it appears that the
benefits of situated analytics are harder to manifest.

What causes this discrepancy? Likely, an important cause is that
including physical referents into visualizations proves challenging. Im-
mersive analytics essentially provides a gigantic canvas, free of any
referents. In contrast, situated analytics needs to carefully combine
the physical and the virtual, and must respect that referents can also
confound interactive visualization. It is not obvious how to support
fluid interaction [17] or encourage analytic depth [44] when one must
interleave task execution in the real world with data analysis performed
in the virtual world. In fact, the few situated visualization scenarios that
emphasize analytic depth [45, 64] avoid the aforementioned difficulties
by using paper artifacts. Arguably, pieces of paper are “lesser” referents
in the sense that they are neither unique, nor is the location of tasks
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Fig. 2. (left) Desktop visualization/analytics has no notion of the physical world. (middle) Immersive visualization/analytics introduces the notion of a
spatial display, which enhances perception and affords spatial interaction, such as ego-motion. However, the notion of a physical world is still absent.
(right) Situated visualization/analytics explicitly introduces the real world in the form of physical referents and physical displays. One may manipulate
the visualization directly via abstract interaction or indirectly via physical interaction with referents.

involving paper referents particularly relevant. We strongly believe that,
with better software toolkits, building compelling situated analytics
applications will become just as easy as building immersive analyt-
ics applications. At the moment, however, such toolkits for situated
analytics are still missing.

In this paper, we attempt to close this gap by introducing RagRug, a
toolkit for building situated analytics applications. The name RagRug
was chosen to reflect the heterogeneous nature of AR. Our toolkit
weaves “rags”, i.e., virtual or physical components, into a “rug”, i.e.,
a composite structure of high practical value. In summary, our work
makes the following contributions:

• Requirements: We investigate the differences between immersive
analytics and situated analytics, and we use this investigation to
bring out the special requirements that situated analytics has over
immersive analytics (Section 3).

• RagRug toolkit: We contribute the RagRug toolkit and describe
how it fulfills the needs of situated analytics that have not been previ-
ously addressed by other toolkits. In particular, RagRug leverages a
representation of referents in an explicit physical-virtual model and
uses a distributed visualization pipeline (Section 4).

• Application examples: We present results covering four different
use cases, ranging from spatially small to large environments and
from primarily virtual to primarily physical data (Section 5).

2 RELATED WORK

We briefly review the state of the art in situated analytics and the
various domains to which it is related. Specifically, we compare toolkits
for visualization with toolkits for VR, AR, and IoT. We also review
authoring solutions for these domains.

2.1 Situated visualization and analytics

Thomas et al. [67] speak of situated analytics when a visualization
is perceived close in space and time to its referent. This definition
implies that we know the referents’ spatiotemporal location. In the
simplest form, one can only detect the presence of referents, not their
exact spatial location [5, 78]. Yet, a lot of research in AR has focused
on object detection and registration. For example, referents can be
detected using Wifi [35] or ultra-wideband radio [33]. Most approaches
use a detector based on some form of computer vision [35].

Given such precise registration information, situated visualization
techniques can embed [72] visualizations into the perception of ref-
erents. Data that has an inherent spatial characteristic is an obvious
candidate for embedded visualization, as simple overlay onto a referent
at 1:1 scale already provides the user with additional insight. Such
visualizations can reveal the correspondences between real and virtual

dimensions, e.g., for temperature [26], viticulture [38], geological for-
mation [40], water levels [68], corrosion [69], pollution levels [71],
construction site progress [80], or CAD models [30].

There are also attempts at situated visualization of abstract data with-
out an inherent spatial dimension, e.g., tourist maps [14], charts [15],
nutritional information [18], bibliographies [45], or free-form anno-
tations given as post-it collections [64]. However, these works do
not expose their situated visualization techniques in a general-purpose
toolkit, as we do.

2.2 Toolkits for visualization
Toolkits are essential components of visualization research, as they
allow practitioners to build more expressive visualizations, and to do
so with enhanced ease of use. Visualization toolkits, such as InfoVis
Toolkit [21], ProtoVis [10], Prefuse [28], D3 [11], or Vega [60] brought
data visualization to a broad audience of programmers, web designers,
and other target groups.

Broadly speaking, contemporary Visualization toolkits, such as Vega-
Lite [1], generate visualizations by applying a series of visual encoding
transformations to the raw input data elements. The vocabulary of
transformations is typically given as a grammar of graphics [9]. The
resulting 2D visualizations are presented on desktop computers or em-
bedded in web pages. Consequently, this class of visualization toolkits
usually does not support 3D visualizations or interaction beyond mouse
and keyboard.

Recent research has focused on toolkits for immersive analytics,
which bring data visualization to VR. Moving to VR makes it necessary
to generate a visual representation in 3D, even if the visual encoding
of the visualization may still be restricted to 2D. Several toolkits for
immersive analytics, such as DXR [62], IATK [16], and U2VIS [57]
have been built with the Unity game engine, which is currently the
most popular choice for VR game development. DXR uses a grammar
of graphics to generate visualizations represented as graphical game
objects, thereby establishing a workflow on a VR platform comparable
to desktop visualization toolkits. IATK has similar visual encoding
abilities as DXR, but much better performance on large data sets, since
its visual encoding runs in geometry shaders on the GPU. MRAT [51]
is an immersive analytics toolkit with a different purpose. It lets de-
velopers instrument AR applications by visual programming for data
collection during user sessions. This collected data is then synthesized
into 2D and 3D visualizations for further analysis. VRIA [13] takes an
alternative implementation approach by relying on web technologies,
in particular, the WebVR standard. While this approach benefits from
its openness and avoids being tied to a particular platform, it lacks the
rich community and ecosystem built around Unity.

A common limitation of all these immersive analytics toolkits is
that, while they support AR displays to some extent, any support for
referents (and, consequently, for situated analytics) is extremely limited.
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In the words of Milgram and Kishino [50], they do not provide much
help to increase the “extent of world knowledge”.

2.3 Toolkits for VR, AR, and IoT

Besides delivering 3D graphics, one of the main requirements that
VR/AR toolkits must address is the support for a wide variety of input
and output modalities. There are many different display form factors,
different tracking devices, and other aspects which are hardly consid-
ered in desktop applications. An even more diverse range of devices
than required in VR/AR must be supported in IoT, and such devices
increasingly play a pivotal role as active referents in AR applications.

IoT scenarios require a networking middleware capable of forward-
ing events and data streams in a flexible manner [59]. Several ap-
proaches combining AR and IoT use such a networking middleware to
deliver situated visualizations (at least very simple ones) for electronic
devices [52]. A popular scenario in this space is appliance remote con-
trol [8,24,35,42,61]. Another special case of AR remote control targets
mobile robots [37] and drones [20, 79]. Other AR/IoT applications
cover physically larger areas, such as traffic [54] or factories [3], or
target composite devices, e.g., an audio mixer [46].

Of course, we are not the first to consider networking middleware
for device communication in AR or related fields. Specialized tools for
establishing a distributed dataflow, which let communicating devices
act as sending and receiving nodes in a network, have been used in
VR [66], AR [58], and robotics [56]. However, these approaches are
rather narrow in their scope, hardware support, and protocols. RagRug
aims to achieve broader coverage of a wide selection of IoT devices.

2.4 Visualization authoring

The coding aspects of immersive and situated visualization have been
addressed with domain-specific languages [41, 47] and visual program-
ming [23]. This is sufficient if the visualizations have a known scope
(for instance, user session analysis [51]), but a general-purpose au-
thoring process must also consider content creation, i.e., dealing with
geometry, appearance, animation, and so on. To some extent, both
coding and content creation for AR can be simplified by simulating the
real environment [19, 55]. However, simulations are not always faithful
enough and cannot be used if the environment is not known in advance.
In these (frequent) cases, situated authoring – in the sense of authoring
at the actual physical location – is the only option [49].

Meanwhile, immersive analytics toolkits [14–16, 62] transfer some
or all of the visualization pipeline specification (i.e., authoring) into the
immersive domain. While this approach works well with VR, it does
not include the physical world.

Jansen and Dragicevic [34] propose to address this discrepancy by
leveraging instrumental interaction [7], a generalized form of direct
manipulation, which distinguishes domain objects (in our case, the vi-
sualization data) from interaction instruments. Interaction instruments
combine physical and virtual parts (see also Figure 2). Indeed, referents
can serve as physical instruments in situated visualization, while the
stages of the visualization pipeline can serve as virtual instruments [34].
Examples for physical instruments are proxemic interactions [42],
which leverage the relative pose of user and referents as input, or touch
interactions on ordinary surfaces via hand tracking [25, 27, 73, 74].
Because of its natural match with AR, instrumental interaction pro-
vides a powerful framework to perform situated authoring. Notable
examples from the literature apply this form of authoring to embedded
remote controls [73], creation of status visualizations [29,36], or visual
programming of electronic devices [65].

RagRug supports a similar form of authoring. It enables the combi-
nation of physical and virtual instruments in a completely open manner,
using free-form dataflow.

3 REQUIREMENTS

The requirements of a situated analytics toolkit are diverse, since
it needs to span visualization, VR, AR, and IoT. To give a concise
overview of the requirements, we organize the discussion around four
topics that a situated analytics toolkit must address in order to be of

practical value, i.e., to avoid making unrealistic simplifying assump-
tions: context-awareness, physical-virtual models, reactive behaviors,
and situated authoring.

3.1 Provide context-awareness for visualizations

In order to incorporate referents into our visualizations, a first and
foremost objective is to R1 make visualizations context-aware with
respect to changes in the real world. Context is crucial to accommodate
an AR user who cannot be expected to explicitly specify every minute
detail of the current situation to the AR system while being immersed
in a physical task. Context-awareness reduces the need for explicit
specification. For example, the AR system may assume that commands
issued by the user refer to the currently present referents, unless it is
otherwise indicated.

Therefore, RagRug must connect visualizations to real-time events
and data streams from sensors worn by the user or placed in the en-
vironment. The context acquired from these sensors can be diverse.
For example, if a referent is moved, a camera tracks the movement,
and an embedded visualization registered to the referent moves along
with it. If the incident lighting changes (e.g., if the window blinds are
opened), an illumination sensor fires, and the system changes colors
and contrast of the see-through visualizations. If the user performs an
invalid action (e.g., attaching the wrong machine part during a guided
repair procedure), a monitoring component notices the mistake, and a
warning is displayed. None of these events would likely be considered
by a user as an explicit interaction with a visualization. Yet, from the
point of view of the situated analytics application, they are regular
events that must be processed by the application logic.

3.2 Support a comprehensive physical-virtual model

Referents do not only make themselves known through short-lived
events, they also have persistent or semi-persistent characteristics, such
as shape, location, or identity. Situated analytics applications must
know about these characteristics. For maximum flexibility, a data-
driven application should not contain any hard-coded data about refer-
ents. Instead, it should query a suitable database to obtain relevant data
about references dynamically. We therefore require that RagRug must
R2 support the developer in creating and maintaining a comprehensive
physical-virtual model. The model can be understood as a kind of
digital twin. It comprises not only virtual data from arbitrary external
sources, but also the most recent state of the referents and other charac-
teristics of the physical world. Thus, the model is essential in correctly
linking visualizations to referents.

Despite the long standing recognition [63] of a need to connect
AR to data about the real-world, we are not aware of any toolkit-level
support for the inclusion of a general-purpose physical-virtual model
in the visualization authoring process. We require means to define the
model, store it, fill it with data efficiently (i.e., in an automatic or at
least a computer-assisted manner), and retrieve the data from the model
in a flexible way (i.e., using an appropriate query mechanism).

3.3 Make visualizations reactive

The data sources implied in these examples are varied. Nonetheless,
building a flexible interface for data sources known in advance is rela-
tively simple. In contrast, building an interface for communication that
adapts to new data sources on the fly is significantly harder. This kind
of requirement is not addressed well by current immersive analytics
software, which assumes that all relevant objects – in our case, the
referents – are determined at startup and do not change while interact-
ing with the visualizations (a property which Lacoche et al. [39] call
“auto-configurable”).

RagRug strives to be fully context-aware and not just auto-
configurable. Therefore, a further objective is to R3 make the visu-
alization pipeline reactive, i.e., a re-evaluation of the pipeline must
be triggered after every external change. For example, marks in a
visualization may be changed whenever a device is powered on or off.
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Fig. 3. (left) The visualization pipeline of a standard IATK application consists of (1) data acquisition from a CSV file, (2) data filtering and (3) visual
encoding in IATK, and (4) rendering in Unity. (right) Combining an IoT application environment with IATK yields a distributed visualization pipeline:
(1) Data is acquired using MQTT; (2) data is filtered using dataflow in Node-RED; (3) data is visually encoded in IATK; (4) visualization marks
are rendered in Unity. However, this approach introduces a gap between IoT and IATK (dashed orange arrow) and consequently lacks a unified
programming model.

3.4 Enable situated authoring of visualizations
A physical-virtual experience with numerous, diverse elements can be
difficult to oversee. Conventional development cycles of modifying
code, then testing it, tend to become arduous when coding requires a
desktop computer, but testing requires physical interaction with refer-
ents [23]. A lower entrance barrier and better expressive leverage [53]
can be achieved by allowing situated authoring at runtime [48].

To address this requirement, we propose to combine the aforemen-
tioned reactive visualization pipeline with runtime interpretation of
application logic. Combining these two technologies enables the visual-
ization designer to modify every aspect of the system either by scripting
or visual programming, without ever having to shut down the system.
Designers can interleave coding, data modeling, and spatial interaction
for rapid design iterations, and experimenters can deal with unforeseen
situations by adjusting code and content on the fly as needed. RagRug
must therefore progress from “authoring of situated visualizations” to
R4 situated authoring of visualizations. What is required for this kind
of authoring?

Obviously, RagRug cannot solve all needs of situated authoring with
a fixed set of interaction tools. Hence, instead of including interaction
tools directly, it should offer a programming model for creating novel
instrumental interaction tools [34]. We will explain below how RagRug
achieves this requirement by providing a uniform programming model
for all components (IoT services, AR displays, databases, etc.), thereby
insulating the developer from the difficulties of dealing with diverse
and complex components.

Item Description
R0 Provide 3D visual encoding
R1 Make visualizations context-aware
R2 Support a comprehensive physical-virtual model
R3 Make the visualization pipeline reactive
R4 Support situated authoring of visualizations

Table 1. Five requirements guide the design of RagRug

4 TOOLKIT DESIGN

The visualization capabilities of RagRug build on the state of the art in
immersive analytics. In particular, RagRug builds on IATK (Figure 3,
left), which has best-of-class abilities with respect to immersive analyt-
ics. IATK is fast, its code is well-maintained, and its integration into
Unity lets developers benefit from the rich VR/AR ecosystem evolving
around Unity. This motivated us to adopt IATK. Consequently, RagRug
inherits all visual encoding abilities of IATK and produces the same vi-
sual representations. This capability addresses the implicit requirement
R0 of providing 3D visual encoding capabilities, which we add to the
list of requirements (Table 1).

The added value of RagRug comes from its substantially extended
interaction capabilities when compared to IATK or other toolkits in its

class. The term “interaction capabilities” is used in a broad sense here
to mean explicit input provided by the user (e.g., via 3D controllers
or touch surfaces), but also any interaction with the environment. It
has been argued that interaction is the perpetual step-child of visualiza-
tion [75]. We feel that progress in the new field of situated analytics crit-
ically depends on promoting interaction in visualization with enhanced
interaction capabilities. Requirements R1-R4 all concern aspects of
the interaction with the environment and are not (or not sufficiently)
addressed by IATK, which focuses only on visual encoding (R0).

First, IATK lacks any capabilities for context-awareness. It has
no support for streaming data from sensors or receiving events from
external sources. Even if external sources are added (e.g., via additional
Unity libraries), the static data model underlying IATK is ill-suited for
the dynamic event streams implied by R1.

Second, IATK procedurally generates visual marks from a static
dataset. It is possible to embed referent representations in such a
dataset. However, that does not make such referents first-class citizens.
Updating the physical-virtual model (containing the referent descrip-
tion) requires manually replacing the dataset, which is hardly what is
implied by R2.

Third, IATK offers only a finite set of built-in interactions (brushing
of data points, axis scaling, etc.). This limitation is not so much a result
of its focus on immersive analytics, but rather a consequence of its
lineage from Vega-Lite, which favors ease of use over expressiveness
when it comes to reactive behaviors. The precursor of Vega-Lite, Re-
active Vega [60], explicitly made input streams and events first-class
citizens via its event-driven functional reactive programming model
(E-FRP) [70]. FlowMatic [77] has recently demonstrated how E-FRP
can be applied to authoring 3D interactions. To address R3, we use a
similar extension inspired by E-FRP in RagRug.

Fourth, IATK has only limited support for situated authoring. One
can use its desktop interface for limited visual programming, but this
solution does not extend to provisioning new context-aware data sources
or re-coding the reactive behaviors of the visualization to deal with
such sources. Full support for R4 demands that not only the sources
and sinks (effects on the visualization) can be re-coded on the fly, but
also all transformations between source and sink.

The above appraisal of IATK reveals which capabilities are lacking.
In the remainder of this section, we will systematically expand our
software architecture to address them, while carefully ensuring that
existing benefits provided by each of the components are retained.

4.1 Context-awareness
Context-awareness (R1) in RagRug is provided by adopting IoT soft-
ware. We will therefore begin our discussion by describing the state
of the art in this area. IoT devices, such as sensors or actuators, are
typically headless, i.e., they can only communicate over the network.
Since IoT devices are also embedded systems without programmability
(their purpose is only to send data or receive commands), the actual
IoT application logic is executed on a cloud (or edge) server. Since
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Fig. 4. The RagRug client extends the standard IATK application model (shown in Fig. 3) with third-party components (MQTT, PowerUI) and custom
components (reactive IATK, dataflow runtime). As a result, a unified programming model based on dataflow and reactive programming is now
available throughout the entire system. The client-side visualization pipeline (orange arrow) does not differ in programming style from the hub-side
visualization pipeline.

the server is not as resource-restricted as the IoT devices are, it conve-
niently leverages a standard multi-tier web architecture, consisting of
an HTTP server, a Node.js processor for Javascript applications, and
database backends.

One of the most widespread application frameworks for IoT applica-
tions is Node-RED1. It exposes a dataflow programming model, which
supports application logic built by connecting nodes into a pipes-and-
filters [12] graph, with data streaming through the graph. The operations
assigned to a node can be chosen from a standard library (e.g., nodes
for averaging values or for merging two streams) or written as custom
Javascript functions. Authoring for such an application framework
is frequently done in a low-code manner via a visual programming
tool, which lets the user interactively build a node-link diagram repre-
senting the dataflow graph, intertwined with writing small amounts of
Javascript code for customizing the nodes.

If Node-RED developers follow the recommended practice of keep-
ing their Javascript code free of side-effects, the result conforms to
E-FRP [70]: Events (in our case, from IoT sensors or other real-time
sources) are assembled into streams consisting of time-stamped event
sequences. Every new event received by a source node triggers an
update to its dependent nodes in the dataflow graph, until the dataflow
arrives at the sinks.

The dataflows in Node-RED are computed locally in a Node.js envi-
ronment. Since the need for distributing dataflow across a network fre-
quently arises, Node-RED is typically combined with publish-subscribe
(pub-sub) communication [12], e.g., by leveraging the message queue
telemetry transport (MQTT) protocol. MQTT is a lightweight network
protocol, which is designed to efficiently distribute device data across a
network [31]. Publishers tag their messages with a topic upon sending
them, and subscribers can express interest in various topics. A broker
(we use the open-source tool Eclipse Mosquitto2) is responsible for
routing the messages to the relevant subscribers. Publishers and sub-
scribers can either be nodes of a dataflow graph executed in Node-RED,
or, arbitrary hosts on the network. Pub-sub can connect nodes that
know of a shared topic, but do not know each other directly (a concept
also known as referential transparency). The use of topics significantly
eases the implementation of context-awareness. With a topic agreed in
advance, publishers (e.g., sensors) and subscribers (e.g., visualization
applications) find each other at runtime without any additional directory
services.

Since it also represents a known point of contact for a particular
environment, we call the ensemble of IoT services built around Node-
RED and Mosquitto a hub.

1https://nodered.org
2https://mosquitto.org

4.2 Physical-virtual model
To provision a physical-virtual model (R2), we leverage the hub’s web-
centric architecture, in particular, the database backend. In industrial
environments, such databases may, for instance, be used in production
planning or to log sensor readings for documentation. In RagRug, we
utilize the databases to store the physical-virtual model. For example,
we store sensor readings as time series in InfluxDB3, CAD or 3D scan
data describing the physical environment in CouchDB4, and relational
data, such as room codes, in Postgres5.

The main advantage of having such a database backend does not
come from the creation of the data, which, in most cases, must still be
done manually, either by manual entry or by manually collecting and
converting the required data sources. Rather, the benefit of the database
backend comes from the ability to answer queries issued by a client.
Rather than having to push a particular dataset manually to the client,
the dataset can be deposited in the database, and the client can query it
dynamically. For example, upon entering a room, the client can issue
a query about all data elements tagged with the current room code,
and receive an up-to-date representation of all referents that have been
stored in the database. Hence, database queries do not only make it
easy to organize the physical-virtual model, they also provide a degree
of referential transparency for the static aspects of a situated analytics
application.

4.3 Reactive programming
Up to this point, we have described two standalone platforms, one
for immersive analytics – e.g., an AR client running Unity, Microsoft
Mixed Reality Toolkit (MRTK), and IATK – and one for IoT applica-
tions (a hub running Node-RED, Mosquitto and other services). To-
gether, the two platforms offer a lot of functionality in a tried and
tested form. If we want to use this functionality in a combined applica-
tion, it makes sense to first consider a lightweight integration that lets
developers tap into both software ecosystems as needed.

Indeed, establishing a rudimentary connection between the two
platforms is rather simple (Figure 3, right). We only need to add an
MQTT library to the client and connect it to dataflow sinks in Node-
RED in order to receive event streams. Then, we write code to change
the IATK visualization whenever new events arrive. The result is a
split visualization pipeline, where data acquisition is accomplished by
the IoT devices; data preprocessing is performed in Node-RED; visual
encoding is done by IATK, and rendering is carried out by Unity.

However, this approach suffers an important drawback. It has good
expressiveness (all important things can be done), but rather mediocre
ease of use: The two platforms have noticeable different programming
models, and building complex, scalable applications is cumbersome. In

3https://www.influxdata.com
4https://couchdb.apache.org
5https://www.postgresql.org
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Fig. 5. Comparison of authoring in IATK and RagRug: (a1) traditional IATK specification in the Unity editor; (a2) an equivalent IATK specification in the
Node-RED editor, (b) the IATK-internal JSON representation created by either a1 or a2; (c) the resulting visualization.

particular, writing custom IATK code for every kind of incoming event
sequence is inelegant and prone to errors. We would much prefer if
IATK can naturally participate in the dataflow, ideally, using the same
reactive programming style as applied in the rest of the system.

Making IATK reactive Hence, we must extend IATK to support
reactive programming (R3). In other words, the visualizations of IATK
must accept updates outside of the limited built-in interactions. To
understand our solution to this issue, we have to take a closer look at the
internal operation of IATK. Recall that a grammar of graphics defines
production rules that can be applied on data sources to describe the
visual encoding process in a flexible manner. In the case of IATK, the
productions rely on a decorator pattern [22] to chain design commands
to a basic visualization object. The basic visualization object is, in turn,
linked to a data provider object, which is a container object representing
a set of data points in memory. Internally, IATK stores data points in
arrays on the GPU, where a geometry shader converts data points on
the fly into 3D geometry for visualization marks.

This architecture implies that a visualization may be changed in two
ways: First, the values that make up the data points (or the number
of data points) may change. In this case, it suffices to re-transmit the
changed or new data points from CPU to GPU, and the visualization
will automatically be updated by the geometry shader. Second, the
definition of the marks may change. In this case, IATK visualization
structures (represented internally as C# objects) must be updated, and
we want to carry out this update in a minimally invasive way.

Hence, we trigger both types of change operations from the external
dataflow. The first case, updating data points, is addressed with an
MQTT event handler which updates the data provider (i.e., the CPU
copy of the data point array) and triggers a synchronization from CPU
to GPU. As a result, an updated visual representation will be generated
when the geometry shader is invoked the next time.

The second case, updating visualization structures, repurposes the
internal mechanism of IATK for loading and saving a visualization
as a JSON string. Loading relies on lazy evaluation (i.e., only those
parts present in the JSON string are updated), which perfectly fits
our requirements of applying incremental changes at runtime rather
than building a visualization anew from scratch. We expose the IATK
load function to the handler for incoming MQTT events. It creates
a JSON string filled with the desired parameters, and passes it to the
load function of IATK. By passing JSON, our Javascript code does
not have to know about the internal C# representation of visualizations
in IATK. This advantage comes at the cost of having to encode and
decode a JSON string and let IATK decode it again. However, the
strings are short, and we have not observed any slowdowns using this
approach. Another advantage is that any third-party extensions to IATK
will inherently continue supporting the load functionality, so we can
be confident that our update method will be maintenance-free in future
versions of IATK.

Client-side dataflow The reactive programming extension to
IATK as presented above has an important limitation: Visualizations
directly depend on events delivered by the dataflow. Since the dataflow
is still restricted to operate within Node-RED, the client can only sub-
scribe to MQTT messages and apply the message content to IATK. It
cannot run any dataflow locally to further process events. Instead, any
interactive or reactive behavior must be handled via a round-trip to
Node-RED on the hub. This behavior would also apply to 3D interac-

tion emerging from local 3D input on the client (e.g., 3D hand tracking
events delivered by MRTK). Sending data from the client to the hub
and back after processing unnecessarily increases complexity and may
induce unwanted latency. Thus, we desire the ability to establish a local
dataflow on the client.

Since embedding another instance of Node-RED inside Unity for
running client-side dataflow is not feasible, we built a lightweight
runtime interpreter for dataflow (Figure 4). Sources of the dataflow
can be events local to the client (e.g., from MRTK) or MQTT events
received over the network. Dataflow sinks can be connected to IATK
in order to make updates to visualizations, although other Unity game
objects could serve as sinks as well.

Since we want all communication facilities to be uniform, we also
allow local pub-sub inside the same Unity instance. Instead of routing
messages through the hub, local subscribers receive messages directly
with minimal latency. If desired, a copy of the message can still be
distributed to the hub (e.g., for bookkeeping) and relayed to other hosts.

4.4 Situated authoring
To support situated authoring, we must strive for a unified program-
ming model encompassing all components of RagRug. In the following,
we describe how we enable Node-RED-compatible dataflow program-
ming in Javascript (and therefore a distributed form of E-FRP) inside
our AR client, which conventionally uses imperative C# as its native
programming language.

With PowerUI6, a Javascript extension to Unity, all application code
can be written solely in Javascript on both hub and client. PowerUI has
the ability to automatically expose the C# libraries we are using (such
as the IATK, MRTK, and MQTT libraries) to Javascript. The Javascript
code can be dynamically loaded and compiled just in time, which is
important for agile development. If only the Javascript portion changes,
the compiled Unity code does not need to be updated at all.

Our dataflow runtime for the client is written in Javascript as well. It
reads unmodified dataflow graphs of Node-RED. During initialization
of a RagRug application, Javascript code is automatically deployed
from the hub to the client. This Javascript code contains the runtime
library for executing the client-side dataflow, the exported dataflow
graph exported for the client (in JSON format), and any Javascript
functions for customizing the nodes.

The dataflow authoring in the Node-RED editor also integrates the
grammar of graphics used by IATK. Rather than expressing a visual
encoding as a series of decorator function calls in C#, the designer
relies on a series of equivalent JSON strings wrapped in linked nodes
of the dataflow. In that way, all steps in the visualization pipeline (and
not only the visual encoding, as in original IATK) can be uniformly
expressed as dataflow (see Figure 5).

A distributed dataflow is authored in the Node-RED editor in the
same manner as a local one, with the only additional requirement that
the dataflow must be appropriately split for deployment across multiple
hosts in the network. From an authoring point of view, all other aspects
remain unchanged. The only exception is that the author must bear in
mind that some features may have restricted availability. For instance,
3D input events may only be available on an AR client.

In summary, we have found that uniform support of Node-RED-style
dataflow with custom Javascript behaviors across the entire distributed

6https://powerui.kulestar.com
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Aspect IoT app. IATK app. RagRug
Language Javascript C# Javascript
Visual encoding no Vega-Lite Vega-Lite
3D rendering no Unity Unity
Interaction reactive fixed reactive
Passive referents via database no via database
Active referents via MQTT no via MQTT

Table 2. RagRug combines the advantages of IoT applications with
immersive analytics capabilities in a unified reactive programming model.

system is not only easy to learn and use, but it also facilitates situated
authoring very well, because it is easy to modify only a small portion of
the distributed system. The changed Javascript code can be re-loaded
and re-started at any time, even while the applications keeps running
(for instance, while wearing a VR or AR headset). We have found that
this automatic code deployment makes it much easier to work with
mobiles or wearables. RagRug developers often spend their workday
using a hybrid interface by wearing AR glasses while seated at their
desktop computer. We find this behavior to be a serious demonstration
of situated authoring (R4) in real life.

From the visualization developer’s perspective, the combination
of Javascript with two relatively minor (when compared to overall
software complexity of the platform) extensions – reactive IATK and
Unity dataflow – makes a significant difference, as it results in a unified
programming model, as summarized in Table 2:

1. Javascript is the sole implementation language. (C# is still available
if desired, but we have found no need for it.)

2. Most interaction processing can be set up as dataflow, which is easy
to learn and yields modular, reusable code.

3. Authoring can be entirely conducted in the low-code evnironment
of Node-RED.

Note that, as a byproduct, multi-user support can be achieved without
any additional multi-user network library. For instance, one could
forward all 3D events generated by a first AR client via MQTT to a
second AR client, where it is made available alongside the local 3D
events provided by the second AR client. A client application would
be agnostic as to whether 3D events were generated locally or remotely.
We describe another multi-user application in Section 5.3.

4.5 A simple authoring example: smart fridge

As a practical example to demonstrate authoring with RagRug, we
build a smart fridge. We install a thermometer and a distance sensor
inside the fridge (Figure 6). The thermometer data stream can be used
to visualize if a proper temperature is maintained inside the fridge. If
the temperature rises to exceed a critical mark, we use the distance
sensor to check if the fridge door has been inadvertently left open and
display an audio-visual alarm. We demonstrate two variants of the
smart fridge application. In both cases, it is assumed that the distance
meter and the thermometer are connected to local Wifi and publish their
measurements via MQTT.

Variant 1 connects the AR client directly to the sensors without
involving the hub. The dataflow (purely in the client) for Variant 1
consists of 12 nodes, as shown in Figure 7. The code for all nodes
together amounts to about 60 lines of Javascript and another 40 lines of
JSON for initialization for the IATK visualization. The code contains
no complex control structures; most of it is boilerplate for initialization
and for simple data transformations.

Variant 2 implements the same features, but demonstrates a dis-
tributed dataflow instead of pure client-side dataflow. The original
node (labeled “L” in Figure 7) which displays an alarm if the door has
been left open is split into two: The code for checking is executed in
Node-RED, while the alarm display remains at the client. The two
nodes are connected by MQTT messages: The hub node publishes
“alarm” events, which the client node subscribes to (Figure 8). This
version is preferred if scalability is important, for instance, if many
sensors must be monitored.

Fig. 6. The smart fridge displays line chart visualizations of its sensors
and rings an alarm if the door is left open. The inset shows the sensors
mounted inside the fridge.

Fig. 7. Dataflow of the smart fridge example. The graph is a snapshot
directly taken from the visual programming front-end of Node-RED: (A)
trigger dataflow after 5 s delay, (B) send JSON template for the IATK
visualization, (C) create IATK visualization, (D) trigger dataflow after
5 s delay, (E) move visualization into heads-up display, add collider
so user can reposition the visualization, (F) subscribe to MQTT topic
“temperature”, (G) subscribe to MQTT topic “distance”, (H) parse the
temperature data and inject into dataflow, (I) parse the distance data and
inject into dataflow, (J) insert data into IATK, (K) terminal debug output,
(L) alarm if temperature >10◦ C and distance >35 cm.

Hub:

Fig. 8. Variant 2 of the smart fridge: (top) We replaced node (L) from
Variant 1 (Figure 7) with the nodes (L)-(O). The new node (L) only reads
the distance value and publishes it via node (M). Node (N) subscribes
to the alarm topic and plays a sound via node (O). (bottom): The new
Node-RED part of the dataflow checks if the distance value exceeds the
threshold and publishes an alarm notification. Node (SA) subscribes to
distance values and passes them to node (SB), which tests for the 35 cm
threshold. If the threshold is exceeded, node (SC) publishes an alarm.

We will now describe how to author the fridge example. RagRug
applications are strongly data-driven and typically involve only a small
amount of procedural logic. Consequently, authoring largely consists of
preparing the physical environment, recording the corresponding data
items in the physical-virtual model, expressing the dataflow between
items, and bootstrapping.

Spatial anchors To deliver spatially registered visualizations,
RagRug requires a spatial model of the target environment. The spatial
model must be prepared once in advance, either by mounting a target
for image detection or scanning the room to create a “spatial anchor“,
i.e., a map of the immediate physical environment required by the
on-board 3D tracking system of the AR device for self-localization.
We generate a spatial anchor of the fridge room with the HoloLens
and store it, associated with the room identifier. Anchors are stored as
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Fig. 9. (left) AR view of the automatically generated visualization, con-
sisting of an info-panel on the left, with a leader line to the sensor, and a
time-series graph on the right. (right) A user wearing a HoloLens looking
at an instrumented ventilator.

Fig. 10. Dataflow for one sensor in the basement: (A) trigger dataflow
after 10 s, (B) load JSON visualization template, (C) spawn IATK visu-
alization from JSON template, (D) trigger dataflow after 12 s, (E) place
visualization next to sensor as depicted in Figure 9(middle), (F) subscribe
to all MQTT messages on sensors in the basement, (G) filter messages
based on current sensor, (J) update visualization with new data.

opaque binary objects (only the AR tracking system understands them).
The locations of referents, visualizations, and other relevant objects are
expressed in the coordinate system established by the anchor.

Physical-virtual model The fridge has only two sensors and one
visualization. After physically mounting the sensors, we create JSON
records for the sensors and store them in CouchDB. Finally, we create
a visualization in IATK and store it in CouchDB as well. Visualizations
are expressed by specifying the grammar of graphics understood by
IATK. The visualization is annotated with its desired position above
the fridge in the coordinate system of the anchor. Sensor locations are
not required in this example.

Dataflow In the reactive programming model of RagRug, appli-
cation logic is mostly expressed as Node-RED-compatible dataflow.
Some of the dataflow nodes may include custom-written Javascript
functions. We create an empty dataflow in the Node-RED editor and
fill it with the nodes shown in Figure 7 and 8. Source nodes must be
parameterized with the appropriate MQTT topic (in our case, corre-
sponding to the sensors), and the client sink must be parameterized with
the visualization template or contain custom Javascript code snippets
(in our case, the condition to trigger the alarm).

Bootstrapping Once all information that makes up the physical-
virtual model is stored in the databases of the hub (see above), boot-
strapping is ready. When an AR client is started, only a stub procedure
is loaded. The stub on the AR client connects to the hub listening on
a known address on the wireless network. From the hub, the client
retrieves the application code and all data items describing the environ-
ment. Retrieval of the data items (e.g., referents) is context-aware; for
instance, the data items can be indexed by the current room identifier. In
this way, application code is only loosely coupled to specific referents
or other resources. This bootstrapping mechanism is applied for all use
cases presented in this paper.

5 CASE STUDIES

To evaluate RagRug, we used it to build four more sophisticated applica-
tion examples. We selected scenarios across the spectrum of immersive
and situated analytics, some new and some recreations of work from
the literature. Our examples focus on context-aware handling of IoT
(Section 5.1), large numbers of passive referents (Section 5.2), collabo-
rative immersive analytics (Section 5.3), and fine-grained visualization
embedding (Section 5.4). Below, we describe these applications as well
as their implementations.

5.1 Basement: automatic visualization of IoT sensors
Scenario Consider a typical basement with heating, air condition,

and power metering devices. A facility manager must regularly inspect
the basement to investigate malfunctions and perform repairs. With an
increasing number of devices and IoT sensors installed in the basement,
the facility manager would like to know which devices are nearby, what
their types and capabilities are, what the devices are currently doing,
and what they have been doing in the past.

Device information and visualizations of the sensor data and other
event streams over time should be shown as AR visualizations, spatially
registered to the referents (i.e., the devices), as shown in Figure 9. As a
prerequisite, we only assume that an edge server running the RagRug
hub is installed and connected to the local network. Previous work
investigating a similar scenario [55] relied on tedious manual authoring
of such visualizations. In this example, we demonstrate how IoT
visualizations are generated automatically from existing infrastructure
and its documentation.

Physical-virtual model The model needs to store the location,
type, and capabilities of the sensors deployed in the basement. Knowing
about the sensors lets the AR client establish direct connections to the
sensor and receive their live data streams. Hence, we require the
spatial location of all the sensors, which is stored, alongside with the
other sensor characteristics, in a relational database. Knowing about
the sensor location enables the AR system to present information
relating to a particular sensor as an embedded (i.e., spatially registered)
visualization. If available, we are also able to parse a device’s geometric
description for parts, so that we can link a visualization to a specific
part of a device. Geometric descriptions can be processed from a
variety of common CAD formats (such as STL), which are also stored
as part of the model. The sensor’s location in the basement must be
indicated manually, once upon installation, unless it is already known
from a CAD model. For this purpose, we provide a simple pointing
tool running on the AR device.

Sensor attributes other than location can often be derived from know-
ing the exact sensor type (e.g., in the form of a unique product number).
Such type information can be used to automatically search a detailed
device specification in a product database, encompassing the device’s
parts, its capabilities, and possibly the aforementioned geometric de-
scriptions. Since no wide-spread standards for such product information
exist yet, we have created our own database for the sensors used in our
test setup. Most attributes characterizing a device are just strings (e.g.,
manufacturer and type) or numbers (e.g., voltage or update rate).

We create visualization templates in JSON for each sensor type.
Particularly relevant are time-series visualizations of measurements
(and, possibly, of events, such as malfunctions reported by devices) on
a timeline. The JSON descriptions are downloaded by an AR client and
passed to IATK to generate an instance of a visualization corresponding
to a concrete sensor. We also prepare the application dataflow which is
described in more detail below.

Implementation The basement application has two main parts.
The hub part is responsible for autonomously filling the model with sen-
sor information, which is revealed to any AR clients upon connection.
The AR clients parse the sensor information, connect to the sensors,
and display visualizations generated from their data.

Initially, the sensor part of the physical-virtual model is empty. Upon
first installation of a physical sensor, a standard behavior of the sensor
is to connect to a local wireless network and make contact on a stan-
dard service port, then start streaming data and wait for commands. We
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Fig. 11. MoPop exibition wall with the timeline at the bottom and the year
histogram to the right of the wall.
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Fig. 12. Provisioning of musical meta-data in Node-RED is done via
HTTP/REST (HoloLens) or via WebSockets (smartphone), since the
meta-data does not fit into a single MQTT message: (A) receive a
request for musical recording, (B) construct SQL query matching request,
(C) run SQL query, (D) reply meta-data to AR client, (E) debug output,
(F) multi-plexing of dataflow, (G) extract year from time/date string, (H-M)
individual meta-data attributes sent to smartphone, (N) construct URL
to download cover art image corresponding to musical recording id, (O)
construct HTML image tag to display the cover art image.
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Fig. 13. The physical-virtual model of MoPop is stored in part in CouchDB
(for plain text files and binary files, such as images) and in part in Post-
greSQL (for relational data scraped from MusicBrainz).

assume that sensors use MQTT, although gateways for other communi-
cation standards could be added. A Node-RED application on the hub
recognizes a new device and registers it in a database.

If the device messages contain type information, and a product
database is available, the hub can automatically create a database record
describing the newly connected sensor. We envision that such automatic
creation of database records may be extremely valuable in large infras-
tructures with thousands of sensors, such as industrial facilities. In such
a large-scale use case, setting up the necessary product databases may
be well justified. If no product database is available, records for small
sensor collections can be created manually.

When the facility manager deploys the AR client, it connects to
the hub and downloads the relevant application data. From the sensor
records, the client identifies the MQTT topics to which active sensors
broadcast their data streams, and sets up a dataflow that visualizes the
device data via the corresponding visualization templates. For each
new sensor, a separate client-side dataflow is instantiated (Figure 10),
which includes the possibility for custom filtering and visualization.

Since sensors send each data item only once, the hub automatically
logs all sensor data in InfluxDB. Making the log available gives the
client a choice to visualize the incoming data stream in real time or,
alternatively, query the database for historic data.

To avoid clutter, the client interface only shows the visualizations
for the sensors close to the user. The proxemic events of sensors
entering and exiting the area of interest are conveniently expressed in
the dataflow by evaluating a simple distance threshold. A heads-up
display highlights the sensors currently in the field of view and can
also be used to retrieve a full list of all sensors. Upon moving closer
to a sensor, the semantic level of detail is switched from a compact
glyph indicating sensor type to a full visualization, which can break up
into multiple visualization panels arranged radially around the physical
sensor (Figure 1, left). Panels can be repositioned manually as needed.

5.2 MoPop: computer-supported exhibition curation
Scenario Inspired by the Museum of Pop Culture, MoPop7, in

Seattle (USA), we created an application which simulates the work of a
curator designing an exhibition room showcasing the evolution of two
music genres. This example interleaves analytic work with physical
manipulation of a large number of passive referents.

The curator must design a presentation of musical works (sleeves
of musical recordings and promotional posters) on two opposing ex-
hibition walls (one for pop, and one for rock music). The two walls
display parallel timelines, starting in 1990 for the wall sides closer to
the entrance and ending in 2000 close to the exit. To fill the walls, the
curator picks exhibits and places them at a desired location on either
wall (Figure 1, right). The curator wants the walls to be densely occu-
pied with exhibits. Additionally, the most iconic works of the period
should be presented, which have high sales figures and reputation. To
further inform the overall design process, a visual guidance compo-
nent provides feedback on the influence a particular choice of exhibit
placement has on the desirable qualities of the exhibition..

Physical-virtual model MoPop stores its physical-virtual model
(Figure 13) mostly in CouchDB. It contains a 3D floorplan of the
exhibition space, where the locations of the physical objects, such as
the walls, as well as the location of the various visualizations, have been
added. For the configuration of the exhibition wall, we store various
parameters, such as sizes and storage capacities of exhibition walls,
display names, timeline parameters, 3D object names within Unity
assets bundles, music data, images of record sleeves used as tracking
targets, and so on.

A relational database stores a table of tracking targets, exhibit keys,
and attribute keys to cross-reference them. Upon picking up an exhibit,
the attributes are retrieved on the fly via a database query (Figure 12),
so the collection could be extended at runtime.

The music dataset was downloaded via webscraping from the online
database MusicBrainz8. The webscraping itself was implemented in a

7https://www.mopop.org/
8https://musicbrainz.org/doc/MusicBrainz_API
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Fig. 14. (left) 3D parallel coordinates visualization in the original implementation of STREAM, (right) the same visualization recreated with the
re-implementation in RagRug. In both visualizations, data is progressively filtered from the leftmost to the rightmost scatterplot, while the color is
determined by the first scatterplot.

few hours using Node-RED (Figure 12). MusicBrainz data could be
retrieved on the fly, but we cache the relevant data in Postgres for faster
cross-referencing with the exhibits.

Implementation The curator is equipped with AR glasses
(HoloLens) presenting several interactive visualizations. Preview:
Upon picking up an exhibit, its attributes are shown as a textual overlay.
Occupancy grid: When an exhibit is attached to a wall, it physically
occupies a varying amount of space – CD covers take 18× 18 cm;
vinyl record sleeves take 30×30 cm, and posters occupy 30×50 cm.
Free grid positions on the exhibition walls are visualized in grey and
turn green when occupied. Timeline: Below each exhibition wall, a
virtual timeline is presented to help with keeping the chronological
order (Figure 11). Exhibits in non-chronological order will create an
intersection of leader lines, instantly conveying poor placement to the
curator. Year distribution: A histogram of the years of all exhibits on
the wall is shown perpendicular to each exhibition wall (Figure 11).

MoPop uses image recognition9 to detect and track 100 exhibits
(the maximum number allowed by the recognition library). When the
user picks up an exhibit, and it is recognized by the camera on the AR
device, a message is published to inform other components about the
curator’s current interest.

Each grid position on the exhibition walls is connected to a collider
object in Unity. When the user attaches an exhibit, the collider triggers
multiple updates: First, feedback (guidance) on the placement is de-
termined and published. Second, the year histogram for each wall is
updated, and the new histogram is re-published. Third, a leader-line
is created to connect each exhibit to its year on the timeline. Fourth,
subscribers to the mentioned topics receive the updates and refresh their
content: Year histograms and feedback visualizations get updated.

5.3 STREAM: collaborative immersive analytics

Scenario STREAM is a recently published, sophisticated applica-
tion for immersive analytics in AR, which is especially interesting to
us because it supports collaborative work [32]. In STREAM, users can
arrange multiple 2D scatterplots in 3D space and link them together to
form 3D parallel coordinate trees. Brushing, filtering, and other manipu-
lations of the visualization can be conducted either directly in 3D or via
touch in 2D, on a spatially-aware tablet given to each user. STREAM
has complex visualizations and a sophisticated interface for manipulat-
ing them. However, it has no referents and therefore addresses a “pure”
immersive analytics scenario. Yet, STREAM is a multi-device and
multi-user application with demanding requirements for coordinating
distributed software and hardware components. Therefore, we expected
that a re-implementation of STREAM on top of RagRug would reveal if
RagRug is able to address the needs of immersive analytics in addition
to the needs of situated analytics.

9https://vuforia.com

Physical-virtual model Since STREAM is an immersive analytics
application, it does not include any referents and has a trivial spatial
model, which only helps to establish a common coordinate system
between multiple concurrent users. STREAM visualizes pre-configured
tabular data, which can simply be retrieved via HTTP. However, a
relational database such as Postgres could be used to support more
sophisticated query and filtering operations on larger data collections.

Implementation The original STREAM implements multi-user
synchronization with reactive event handling between users. This ap-
proach requires writing application code that explicitly sends messages
to notify other users about changes to the visualization. We decided
that it would be more efficient to add automatic replication to IATK
instead. With a replicated IATK approach, a user can change the lo-
cal visualization, and the remote replicas of the visualization will be
automatically synchronized.

Since IATK is a plug-in of Unity, other projects using IATK (e.g.,
FIESTA [43]) have relied on Unity networking libraries to synchronize
the Unity game objects underlying IATK. Since there are several widely
used libraries for game object sharing, such as Photon10 or Mirror11,
using them seems straightforward. Yet, these libraries have several
disadvantages for our scenario: Treating IATK visualizations as generic
game objects in synchronization sacrifices our understanding of what
exactly has changed inside the visualization. If IATK caches data on
the GPU, pure synchronization of game objects stored in CPU memory
may not even result in a working solution. Even if game object-level
synchronization did work correctly, it would likely increase latency
and require coarse-grained locking to avoid race conditions between
users. Moreover, we would like to avoid adding another heavyweight
component (a third-party Unity networking library) to our toolkit.

We found that replication of IATK visualizations is a good alter-
native, especially since it can be built atop the existing pub-sub. We
establish synchronization by making the replica a subscriber of a master
visualization. When a change is made to IATK, an observer object [22]
serializes the change into the JSON format (including its data sources).

The serialized updates are published by the master visualization.
Replicas subscribe to these messages and apply the content to their
replicated visualization via the reactive IATK extension described in
Section 4.4. Replicas can either be local (residing in the same Unity
process space) or remote (residing on another host in the network, e.g.,
a second AR device). Remote replicas rely on MQTT for receiving
updates, thereby re-using the existing network infrastructure. To ensure
minimal latency, streams from external sources (e.g., IoT sensors) are
received by all replicas directly and do not need to be relayed through
the master visualization.

We have used this IATK replication to create a new version of

10https://www.photonengine.com/
11https://mirror-networking.com
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Fig. 15. (left) The ControllAR application overlays a visualization of the envelope curve on the corresponding inputs on the keyboard. (right) The
responsibilities for this application are distributed across the keyboard (referent and physical input device), the MIDI client (responsible for sound
synthesis and for converting MIDI events to MQTT events), the hub (here, only acting as a relay) and the AR client (compute envelope visualization
and display it registered in the space above the keyboard).

STREAM, replacing the custom visualizations of STREAM with IATK
and the custom synchronization of STREAM with the IATK replication.
When creating a visualization (e.g., by pressing a button on a tablet),
a matching IATK specification is created in Node-RED and sent to
all clients. Upon receiving, each client builds the IATK visualization.
From here on, all updates are automatically distributed using the IATK
replication, with little additional logic necessary. We use the IATK
replication in a symmetric configuration, which treats each visualization
as master concerning changes made by the client’s user, and, as replica
for changes made by other users.

STREAM uses VIVE Lighthouse sensors for tracking the tablet’s
spatial position. Although these sensors send their data using propri-
etary messages, we can handle them similar to other IoT devices in
RagRug. We convert them on the fly into MQTT messages to deliver
the tracking data in the expected format. Thus, clients can subscribe to
the tracking data stream (e.g., for calculating the tablet’s orientation)
without requiring any additional case distinctions in Node-RED or in
the client code. Proprietary tracking sensors become just another data
source in RagRug.

With the strategy described above, the RagRug toolkit supplanted
the proprietary client/server architecture of the original STREAM ar-
chitecture. The behavior of the STREAM server could be entirely
reproduced with Node-RED and MQTT in a few hours. A particularly
efficient tool was the pub-sub routing, which let us replace the custom
routing code of the original STREAM server with appropriately chosen
topics. Another useful feature was that the current application state
of STREAM could be saved to a database with a few dataflow nodes.
Additional features (e.g., data filter logic) were added as dataflow nodes
with custom Javascript that reacts to specific events.

Special visualization and interaction features used in STREAM (e.g.,
colored borders around scatter plots, hitboxes for application logic)
were added as additional metadata to the IATK visualization specifica-
tion, so they could be piggybacked to the replica update mechanism.
As a result, we achieved a look and feel equivalent to the original
STREAM implementation (Figure 14) with a fraction of the original
code and complexity (reducing the lines of C# code responsible for the
visualization alone from 2956 to 1878).

5.4 ControllAR: musical instrument control

Scenario ControllAR [36] is an AR visualization system for MIDI
devices, which supports musicians in the use of a keyboard instru-
ment. In the original implementation of ControllAR, 2D visualizations
generated by a static display are overlaid via a half-way mirror onto
the keyboard, so that the visualizations are registered with physical
buttons, sliders, knobs and other input elements. The visualizations
are reactive to the user’s input on the keyboard, which is connected to
the host computer via the keyboard’s MIDI interface. We chose this
scenario to demonstrate fine-grained, precise embedding of interactive
visualizations in the coordinate frame of a referent.

Physical-virtual model Our physical-virtual model consists of the
keyboard model, the visualization templates (including data sources

to connect to), the mapping between keyboard parts and visualization
templates, and, of course, the application logic in Javascript. As before,
this data is stored in CouchDB on the hub and downloaded by the AR
client on demand.

Implementation Our re-implementation of ControllAR uses
RagRug to gather, process, and visualize data generated by a MIDI
keyboard (Komplete Kontrol M3212). The keyboard is connected via
USB to a MIDI client. For convenience, we used a desktop computer as
MIDI client, but an inexpensive single-board computer could be used
instead to create a self-contained smart keyboard. The MIDI client
connects to the hub, and a HoloLens is used as the AR client in the
same manner as in our other scenarios (Figure 15).

In AR, we visualize the envelope curve corresponding to the se-
lected equalizer settings. The visualization responds in real time to
manipulations of the amplitude envelope and frequency envelope of the
current sound. The visualizations are placed relative to a hierarchical
geometric model of the keyboard and its relevant input elements. Since
the keyboard is a movable referent, we register it from a small image
marker affixed to the keyboard.

The sound parameters are manipulated using 2×4 dedicated knobs
on the keyboard. When changed, each knob sends MIDI events to the
MIDI client, which re-publishes them as MQTT messages. The MIDI
client also generates the audio output using a synthesizer application
written in Javascript13.

The AR client subscribes to the messages published by the MIDI
client and converts them into an IATK visualization of the amplitude
and frequency envelope curve. The envelope curves are shown adjacent
to the keyboard in Figure 15, serving as an expansion of the keyboard’s
tiny built-in display.

6 PERFORMANCE MEASUREMENTS

We complement the qualitative case studies with a brief review of
performance characteristics. The display of our main output device,
the HoloLens 2, uses dedicated hardware to ensure a refresh rate of
30 Hz for rendering of the Unity scene graph containing the IATK
visualizations from a head-tracked viewpoint. However, changes to
the visualization other than viewport changes require processing of
dataflow events. This processing is subject to the run-time interpretation
of Javascript code and event distribution in the network. Delayed events
can increase the latency of interactive experiences.

Therefore, we were interested in the performance characteristics
of event propagation in RagRug. We connected a HoloLens 2 and a
notebook computer (Intel Core i7-7700HQ, 16B Ram) acting as Hub via
an of-the-shelf Wifi router (Netgear R6400, 5 Ghz band, 802.11a/n/ac).
The wireless network was shared with other computers and devices, so
the available bandwidth is variable. We report average times measured
over a duration of several minutes.

We tested two types of event propagation: Local event propagation
on the HoloLens client sends the event, either by passing events through

12
https://www.native-instruments.com/de/products/komplete/keyboards/komplete-kontrol-m32/

13
https://tonejs.github.io
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dataflow nodes or using local pub-sub. Since both types of local propa-
gation are technically mapped to Javascript function invocation, their
performance differences are negligible. Round-trip event propagation
originates at the HoloLens client, is relayed via Mosquitto on the hub,
and then received and delivered at the HoloLens again. While round-
trip events take an average of 150 ms (minimum: 100 ms, maximum
300 ms), local events are delivered in under 1.5 ms. At 30 Hz framerate,
delay of local events is generally unnoticeable.

Event throughput on the HoloLens 2 is unaffected even if events
are propagated locally at rates that are multiple times higher than the
framerate. The only noticeable costly operation in the Unity framework
is write access to game objects, which is internally serialized through
single-threaded co-routines. The runtime penalty of the dataflow is
negligible as long as the number of game object accesses is minimized.
Since our applications target a particular game object representing
IATK, RagRug aggregates all events intended for IATK and delivers
them exactly at framerate to avoid any slowdowns. This strategy ensures
that IATK applications are unaffected by the single-threaded event
delivery, as long as no other Unity game objects are involved. On
faster hardware, such as an iPad or a desktop computer, we found this
optimization to be unnecessary.

7 DISCUSSION

The significance of a software toolkit is directly related to its acceptance.
In this section, we describe some of the experiences the authors of this
paper have made as developers using RagRug, and, statements made
by other researchers in discussions about RagRug.

One of our main intents was supporting rapid prototyping. We have
characterized “situated authoring” as an activity that rapidly switches
between code writing, content creation, and testing in a physical (or
semi-physical) environment. Concentrating on the non-coding activi-
ties means having less time for the coding activities. For this reason, we
adopted dataflow-oriented programming, which, together with the use
of visual programming, is favored in IoT development. Unsurprisingly,
we found that this programming style offers similar benefits to AR
development. Not only can code be easily modified on the fly with
RagRug, it can be deployed across the distributed system just as easily.
Activities traditionally associated with development on embedded sys-
tems, such as compiling, packaging, and deploying code, then restarting
the device, are entirely avoided. Moreover, the RagRug infrastructure
subsumes a lot of boilerplate code that would otherwise be required to
start up a system consisting of several distributed components across
multiple hardware platforms and operating systems.

These savings were particularly obvious when comparing the origi-
nal version of STREAM to the RagRug version of the same application.
Large portions of the original code, including the network commu-
nication and the server infrastructure, could be replaced with toolkit
functions. As a byproduct of relying on the toolkit, a variety of fea-
tures (e.g., multi-user replication or logging of events) is either free
or requires little additional effort. Besides, breaking the monolithic
interaction code of the original STREAM implementation into separate
dataflows also helped to modularize the code, making it easier to main-
tain in the future. In the dataflow of RagRug, communication endpoints
are explicitly visible, which helps understanding the system’s behavior.
It is also straightforward to insert debugging facilities as extra nodes at
critical places in the dataflow.

The emphasis on low-code programming comes, to some extent, at
the expense of code scalability. Complex coding is better left to tradi-
tional development environments, which excel at supporting developers
in navigating large amounts of code, debugging using breakpoints, or
interfacing with version control systems, such as Git. The strive for
balance between ease of use and expressiveness regarding development
tools reminds of the long-standing dispute in the software engineer-
ing community between advocates of micro-services vs monolithic
applications. The issue is known to the Node-RED community as well.
Indeed, alternative development environments specifically targeting
large Node-RED projects are under active investigation14. Since Ra-

14https://nodered.org/docs/user-guide/projects/

gRag seamlessly integrates into the development suite of Node-RED,
it benefits from such efforts addressing scalability of developing with
Node-RED. Moreover, it is already entirely feasible with the current
state of RagRug to write the core application logic in a monolithic style,
while using RagRug only for the user interface aspects.

Another aspect that may require some acclimatization time for sea-
soned developers is proper timing of the dataflow. Lengthy computa-
tions can stall the dataflow and lead to congestion of buffers holding
data to be processed. Multi-threading can be used to accelerate ex-
pensive computations in the dataflow, since the scheduling of dataflow
nodes is asynchronous. However, using multi-threading may not be
entirely straightforward, since it is subject to two conditions: First,
enough computational resources must be available; second, all the re-
quired data must be stored in local memory of the multi-processor. On
mobile AR devices, computational performance may be insufficient,
and a round trip of the data to the hub may have excessive latency.
These restrictions are familiar to developers of distributed IoT systems,
but VR/AR developers may be less used to them.

8 CONCLUSIONS AND FUTURE WORK

Our examples show that the complex emerging domain of situated
analytics applications can be supported by a toolkit which integrates
referents into the visualization pipeline. Such an integration must go
beyond merely transposing visualization and interaction from 2D to 3D.
Indeed, the focus of RagRug is not on 3D visualization or interaction
itself. Instead, it lets the user set up a distributed dataflow system upon
which a situated visualization pipeline can be built.

While we have successfully used RagRug to build a variety of ap-
plication prototypes, the work on the toolkit is far from complete. The
current version of RagRug provides only the low-level features for
making visualizations reactive to the environment. In other words,
RagRug provides ample mechanisms, but hardly any policies for re-
active visualizations. There is a substantial body of work on handling
occlusion, clutter, contrast, temporal coherence, and other artefacts of
mixed reality displays. Since previous work in this area generally lacks
re-usable implementations, there is limited practical experience with
AR visualization algorithms. Yet, many issues of situated visualization
(and spatial visualization in general) require more and broader experi-
mentation [76]. With a toolkit such as RagRug, the effort in conducting
such experiments becomes substantially more manageable.

RagRug and the examples are available on Github:
https://github.com/philfleck/ragrug

ACKNOWLEDGMENTS

This research was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC 2120/1 – 390831618, as well as by the DFG Project-
ID 251654672 – TRR 161.

REFERENCES

[1] Vega-Lite – A Grammar of Interactive Graphics. https://vega.github.
io/vega-lite/. Last Accessed: 2021-03-28.

[2] C. Andrews and C. North. Analyst’s workspace: An embodied sensemak-
ing environment for large, high-resolution displays. In IEEE Conference
on Visual Analytics Science and Technology (VAST), pp. 123–131, 2012.
doi: 10.1109/VAST.2012.6400559

[3] M. Back, D. Kimber, E. Rieffel, A. Dunnigan, B. Liew, S. Gattepally,
J. Foote, J. Shingu, and J. Vaughan. The virtual chocolate factory: Building
a real world mixed-reality system for industrial collaboration and control.
In IEEE International Conference on Multimedia and Expo (ICME), pp.
1160–1165, 2010. doi: 10.1109/ICME.2010.5582532

[4] S. K. Badam, F. Amini, N. Elmqvist, and P. Irani. Supporting visual
exploration for multiple users in large display environments. In IEEE
Conference on Visual Analytics Science and Technology (VAST), pp. 1–10,
mar 2017. doi: 10.1109/VAST.2016.7883506

[5] S. K. Badam and N. Elmqvist. Visfer: Camera-based visual data transfer
for cross-device visualization. Information Visualization, 18(1):68–93,
2019. doi: 10.1177/1473871617725907

Author's Version

https://nodered.org/docs/user-guide/projects/
https://github.com/philfleck/ragrug
https://vega.github.io/vega-lite/
https://vega.github.io/vega-lite/


[6] R. Ball and C. North. Realizing embodied interaction for visual analytics
through large displays. Computers and Graphics (Pergamon), 31(3):380–
400, 2007. doi: 10.1016/j.cag.2007.01.029

[7] M. Beaudouin-Lafon. Instrumental interaction: An interaction model for
designing post-wimp user interfaces. In ACM CHI, pp. 446–453, 2000.
doi: 10.1145/332040.332473

[8] P. Belimpasakis and R. Walsh. A combined mixed reality and networked
home approach to improving user interaction with consumer electronics.
IEEE Transactions on Consumer Electronics, 57(1):139–144, 2011. doi:
10.1109/TCE.2011.5735494

[9] J. Bertin. Semiology of Graphics. University of Wisconsin Press, 1983.
[10] M. Bostock and J. Heer. Protovis: A graphical toolkit for visualization.

IEEE TVCG, 15(6):1121–1128, 2009. doi: 10.1109/TVCG.2009.174
[11] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE

TVCG, 17:2301–2309, 2011. doi: 10.1109/TVCG.2011.185
[12] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.

Pattern-Oriented Software Architecture - Volume 1: A System of Patterns.
Wiley, 1996.

[13] P. W. S. Butcher, N. W. John, and P. D. Ritsos. VRIA: A web-based
framework for creating immersive analytics experiences. IEEE TVCG, pp.
1–1, 2020. doi: 10.1109/TVCG.2020.2965109

[14] Z. Chen, Y. Su, Y. Wang, Q. Wang, H. Qu, and Y. Wu. MARVisT:
Authoring glyph-based visualization in mobile augmented reality. IEEE
TVCG. doi: 10.1109/TVCG.2019.2892415

[15] Z. Chen, W. Tong, Q. Wang, B. Bach, and H. Qu. Augmenting static
visualizations with PapARVis designer. ACM CHI, 2020. doi: 10.1145/
3313831.3376436

[16] M. Cordeil, A. Cunningham, B. Bach, C. Hurter, B. H. Thomas, K. Mar-
riott, and T. Dwyer. IATK: An immersive analytics toolkit. In IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), pp. 200–209,
2019. doi: 10.1109/VR.2019.8797978

[17] N. Elmqvist, A. V. Moere, H.-C. Jetter, D. Cernea, H. Reiterer, and
T. Jankun-Kelly. Fluid interaction for information visualization. Informa-
tion Visualization, 10(4):327–340, 2011. doi: 10.1177/1473871611413180

[18] N. ElSayed, B. Thomas, K. Marriott, J. Piantadosi, and R. Smith. Situated
Analytics. Big Data Visual Analytics, 2015. doi: 10.1109/BDVA.2015.
7314302

[19] B. Ens, F. Anderson, T. Grossman, M. Annett, P. Irani, and G. Fitzmaurice.
Ivy: Exploring spatially situated visual programming for authoring and
understanding intelligent environments. Graphics Interface, pp. 156–162,
2017. doi: 10.20380/gi2017.20

[20] O. Erat, W. A. Isop, D. Kalkofen, and D. Schmalstieg. Drone-augmented
human vision: Exocentric control for drones exploring hidden areas. IEEE
TVCG, 24(4):1437–1446, 2018. doi: 10.1109/TVCG.2018.2794058

[21] J.-D. Fekete. The InfoVis Toolkit. In IEEE Symposium on Information
Visualization, pp. 167–174, 2004. doi: 10.1109/INFVIS.2004.64

[22] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994.

[23] M. Gandy and B. MacIntyre. Designer’s augmented reality toolkit, ten
years later: Implications for new media authoring tools. In ACM UIST, pp.
627–636, 2014. doi: 10.1145/2642918.2647369

[24] J. A. Garcia-Macias, J. Alvarez-Lozano, P. Estrada, and E. Aviles Lopez.
Browsing the internet of things with sentient visors. IEEE Computer,
44(5):46–52, 2011. doi: 10.1109/MC.2011.128

[25] J. Grubert, M. Pahud, M. Kranz, and D. Schmalstieg. GlassHands: Inter-
action around unmodified mobile devices using sunglasses. In ACM Inter-
active Surfaces and Spaces (ISS), 2016. doi: 0.1145/2992154.2992162

[26] A. S. Gunnarsson, M. Rauhala, A. Henrysson, and A. Ynnerman. Visu-
alization of sensor data using mobile phone augmented reality. In IEEE
ISMAR, pp. 233–234, 2007. doi: 10.1109/ISMAR.2006.297820

[27] C. Harrison, H. Benko, and A. D. Wilson. OmniTouch: Wearable mul-
titouch interaction everywhere. In J. S. Pierce, M. Agrawala, and S. R.
Klemmer, eds., ACM UIST, pp. 441–450, 2011. doi: 10.1145/2047196.
2047255

[28] J. Heer, S. K. Card, and J. A. Landay. Prefuse: A toolkit for interactive
information visualization. In ACM CHI, p. 421–430, 2005. doi: 10.1145/
1054972.1055031

[29] B. Herbert, B. Ens, A. Weerasinghe, M. Billinghurst, and G. Wigley.
Design considerations for combining augmented reality with intelligent
tutors. Computers and Graphics (Pergamon), 77:166–182, 2018. doi: 10.
1016/j.cag.2018.09.017

[30] D. Herr, J. Reinhardt, R. Krueger, G. Reina, and T. Ertl. Immersive

visual analytics for modular factory layout planning. In IEEE Immersive
Analytics Workshop, 2017. doi: 0.1016/j.procir.2018.03.200

[31] G. Hillar. MQTT Essentials - A Lightweight IoT Protocol. Packt Publishing,
2017.

[32] S. Hubenschmid, J. Zagermann, S. Butscher, and H. Reiterer. STREAM:
Exploring the combination of spatially-aware tablets with augmented
reality head-mounted displays for immersive analytics. In ACM CHI,
2021. doi: 10.1145/3411764.3445298

[33] K. Huo, Y. Cao, S. H. Yoon, Z. Xu, G. Chen, and K. Ramani. Scenariot:
Spatially mapping smart things within augmented reality scenes. In ACM
CHI, 2018. doi: 10.1145/3173574.3173793

[34] Y. Jansen and P. Dragicevic. An interaction model for visualizations
beyond the desktop. IEEE TVCG, 19(12):2396–2405, 2013. doi: 10.
1109/TVCG.2013.134

[35] D. Jo and G. J. Kim. ARIoT: Scalable augmented reality framework
for interacting with Internet of Things appliances everywhere. IEEE
Transactions on Consumer Electronics (TCE), 62(3):334–340, 2016. doi:
10.1109/TCE.2016.7613201

[36] A. Jones and F. Berthaut. Controllar: Appropriation of visual feedback on
control surfaces. In ACM Conference on Interactive Surfaces and Spaces
(ISS), p. 465–468, 2016. doi: 10.1145/2992154.2998580

[37] S. Kasahara, R. Niiyama, V. Heun, and H. Ishii. ExTouch: Spatially-aware
embodied manipulation of actuated objects mediated by augmented reality.
In ACM TEI, pp. 223–226, 2013. doi: 10.1145/2460625.2460661

[38] G. R. King, W. Piekarski, and B. H. Thomas. ARVino - Outdoor augmented
reality visualisation of viticulture GIS data. In IEEE ISMAR, pp. 52–55,
2005. doi: 10.1109/ISMAR.2005.14

[39] J. Lacoche, T. Duval, B. Arnaldi, E. Maisel, and J. Royan. A survey of
plasticity in 3D user interfaces. In IEEE Workshop on Software Engi-
neering and Architectures for Realtime Interactive Systems (SEARIS), pp.
19–26, 2014. doi: 10.1109/SEARIS.2014.7152797

[40] J. I. Larregui, M. Luján Ganuza, E. A. Bjerg, S. Castro, N. As, F. Gazcón,
G. Gazcón, J. M. Trippel Nagel, M. L. Ganuza, and S. M. Castro. Im-
mersive analytics for geology: Field sketch-like visualization to assist
geological structure analysis during fieldwork. Technical report, 2018.

[41] F. Ledermann and D. Schmalstieg. APRIL – A high level framework for
creating augmented reality presentations. In IEEE VR, pp. 187–194, 2005.
doi: 10.1109/VR.2005.1492773

[42] D. Ledo, S. Greenberg, N. Marquardt, and S. Boring. Proxemic-aware
controls: Designing remote controls for ubiquitous computing ecologies.
In Proc. MobileHCI, pp. 187–198, 2015. doi: 10.1145/2785830.2785871

[43] B. Lee, X. Hu, M. Cordeil, A. Prouzeau, B. Jenny, and T. Dwyer. Shared
surfaces and spaces: Collaborative data visualisation in a co-located im-
mersive environment. IEEE TVCG, 27(2):1171–1181, 2021. doi: 10.
1109/TVCG.2020.3030450

[44] B. Lee, P. Isenberg, N. H. Riche, and S. Carpendale. Beyond mouse and
keyboard: Expanding design considerations for information visualization
interactions. IEEE TVCG, 18(12):2689–2698, 2012. doi: 10.1109/TVCG.
2012.204

[45] Z. Li, M. Annett, K. Hinckley, K. Singh, and D. Wigdor. Holodoc: En-
abling mixed reality workspaces that harness physical and digital content.
In ACM CHI, pp. 1–14, 2019. doi: 10.1145/3290605.3300917

[46] C. Liu, S. Huot, J. Diehl, W. E. MacKay, and M. Beaudouin-Lafon. Eval-
uating the benefits of real-time feedback in mobile Augmented Reality
with hand-held devices. In ACM CHI, pp. 2973–2976, 2012. doi: 10.
1145/2207676.2208706

[47] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson. The argon
ar web browser and standards-based ar application environment. In IEEE
ISMAR, pp. 65–74, 2011. doi: 10.1109/ISMAR.2011.6092371

[48] A. MacWilliams, C. Sandor, M. Wagner, M. Bauer, G. Klinker, and
B. Bruegge. Herding sheep: Live system development for distributed
augmented reality. In IEEE ISMAR, 2003. doi: 10.1109/ISMAR.2003.
1240695
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